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Sequences Sequences

Problem 1.

(a) How many numbers are in the sequence

15, 16, 17, . . . , 190, 191 ?

(b) How many numbers are in the sequence

22, 25, 28, 31, . . . , 160, 163 ?



Sequences Arithmetic Progression

Solution. To answer the above question in a more general
framework we need the following definition:

Definition. An arithmetic progression or arithmetic
sequence is a sequence of numbers such that the difference of
any two successive members of the sequence is a constant.
This difference between any successive terms is called the ratio
of the arithmetic progression.



Sequences Arithmetic Progression

For instance, the sequence

15, 16, 17, . . . , 190, 191

is an arithmetic progression with ratio 1.
To find the number of the terms in an arithmetic progression
we use the formula

last term − first term

ratio
+ 1

In our case the total number of terms is

191 − 15

1
= 176 + 1 = 177 terms
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For the second example, the sequence

22, 25, 28, 31, . . . , 160, 163

is an arithmetic progression with ratio 3 so the number of
terms would be

163 − 22

3
= 47 + 1 = 48
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Let
a1, a2, a3, . . . , an, . . .

be an arithmetic progression with n terms and having the ratio
r .
From the above formula we find

an − a1
r

+ 1 = n

Hence
an = a1 + r(n − 1)
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Another important formula concerns the sum of terms in an
arithmetic progression

a1 + a2 + · · · + an =
n(a1 + an)

2

In particular we have

(a) 1 + 2 + 3 + · · · + n =
n(n + 1)

2
(b) 1 + 3 + 5 + · · · + (2n − 1) = n2



Sequences Sums of Series

Other useful formulae are as follows

(c) 12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6

(d) 13 + 23 + 33 + · · · + n3 =

[
n(n + 1)

2

]2



Sequences Sums of Series

Problem 2. For any positive integer n find the sum

Sn = 1 · 2 + 2 · 3 + 3 · 4 + · · · + n(n + 1)

Solution. Remark that

Sn = 1(1 + 1) + 2(2 + 1) + 3(3 + 1) + · · · + n(n + 1)

= (12 + 1) + (22 + 2) + (32 + 3) + · · · + (n2 + n)

= (12 + 22 + 33 + · · · + n2) + (1 + 2 + 3 + · · · + n)

=
n(n + 1)(2n + 1)

6
+

n(n + 1)

2

=
n(n + 1)

2

[
2n + 1

3
+ 1

]
=

n(n + 1)

2

2n + 4

3

=
n(n + 1)(n + 2)

3
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In the similar way one can compute

1 · 3 + 3 · 5 + 5 · 7 + · · · + (2n − 1)(2n + 1)



Sequences Sums of Series

Problem 3. For any positive integer n find the sum

Sn = 1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · · + n(n + 1)(n + 2)

Solution. The general term in the above sum is

k(k + 1)(k + 2)

where k = 1, 2, 3, . . . , n
Remark that

k(k + 1)(k + 2) = k(k2 + 3k + 2) = k3 + 3k2 + 2k
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so

Sn = (13 + 3 · 12 + 2 · 1) + (23 + 3 · 22 + 2 · 2) + · · · + (n3 + 3 · n2 + 2 · n)

= (13 + 23 + · · · + n3) + 3(12 + 22 + · · · + n2) + 2(1 + 2 + . . . n)

=
n2(n + 1)2

4
+ 3

n(n + 1)(2n + 1)

6
+ 2

n(n + 1)

2

=
n(n + 1)

2

[
n(n + 1)

2
+ (2n + 1) + 2

]
=

n(n + 1)

2

n2 + 5n + 6

2

=
n(n + 1)(n + 2)(n + 3)

4



Sequences Triangular Numbers

Problem 4. Each of the numbers

1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4

represent the number of balls that can be arranged evenly in an
equilateral triangle.
This led the ancient Greeks to call a number triangular if it is
the sum of consecutive integers beginning with 1.
Prove the following facts about triangular numbers:

(a) If n is a triangular number then 8n + 1 is a perfect square
(Plutarch, circa 100 AD)

(b) The sum of any two successive triangular numbers is a
perfect square (Nicomachus, circa 100 AD)

(b) If n is a triangular number so are the numbers 9n + 1 and
25n + 3 (Euler, 1775)



Sequences Triangular Numbers

Solution. Remark first that n is a triangular number if there
exists a positive integer k such that

n = 1 + 2 + 3 + · · · + k

that is,

n =
k(k + 1)

2

(a) If n = k(k+1)
2 then

8n + 1 = 4k(k + 1) + 1 = 4k2 + 4k + 1 = (2k + 1)2
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(b) Let n and m be two consecutive triangular numbers. Then,
there exists k ≥ 1 such that

n =
k(k + 1)

2
and m =

(k + 1)(k + 2)

2

Then

n+m =
k(k + 1)

2
+

(k + 1)(k + 2)

2
=

k(k + 1) + (k + 1)(k + 2)

2

n + m =
(k + 1)(2k + 2)

2
= (k + 1)2
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Problem 5. Let tn be the nth triangular number, that is

t1 = 1, t2 = 3, t3 = 6, t4 = 10, . . .

Prove the formula

t1 + t2 + · · · + tn =
n(n + 1)(n + 2)

6
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Solution.
We have

tn =
n(n + 1)

2
=

n2 + n

2
.

Therefore,

t1 + t2 + · · · + tn =
12 + 1

2
+

22 + 2

2
+

32 + 3

2
+ · · · +

n2 + n

2

=
12 + 22 + 32 + · · · + n2

2

+
1 + 2 + 3 + · · · + n

2

=
1

2

[
(12 + 22 + 32 + · · · + n2)

+ (1 + 2 + · · · + n)
]

=
1

2

[n(n + 1)(2n + 1)

6
+

n(n + 1)

2

]
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=
1

2

n(n + 1)

2

[2n + 1

3
+ 1
]

=
1

2

n(n + 1)

2

2n + 4

3

=
n(n + 1)(2n + 4)

12

=
n(n + 1)(n + 2)

6



Sequences Arithmetic Progressions with Perfect Squares

Problem 6. Prove that if an infinite arithmetic progression of
positive integers contains a perfect square, then it contains an
infinite number of perfect squares.
Solution. Let

a1 < a2 < · · · < an < an+1 < . . .

be an infinite arithmetic progression containing a perfect
square, say a2.
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Denote by r its ratio. Then, the numbers

a2, a2 + r , a2 + 2r , . . . , a2 + kr

are terms of the above arithmetic progression, k = 1, 2, 3, . . . .
In particular the number

a2 + r(2a + r) = a2 + 2ar + r2 = (a + r)2

is a perfect square and is another term of the above arithmetic
progression.
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Thus,

(a + r)2, (a + r)2 + r , . . . , (a + r)2 + kr , . . .

are terms of the initial arithmetic progression.
As above, it follows that

(a + r)2 + r [2(a + r) + r ] = (a + 2r)2

is a perfect square and belongs to the initial arithmetic
progression.
We have obtained so far that (a + r)2, (a + 2r)2 are terms in
the progression.
Proceeding similarly we obtain that all the perfect squares

(a + r)2, (a + 2r)2, . . . , (a + 100r)2, . . .

are terms in the initial arithmetic progression.



Sequences Arithmetic Progressions of Perfect Squares

Problem 7. Prove that there are no arithmetic progressions of
positive integers whose terms are all perfect squares.
Solution. Assume by contradiction that there exists positive
integers

a1 < a2 < · · · < an < an+1 < . . .

such that
a21 < a22 < · · · < a2n < a2n+1 < . . .

is an arithmetic progression.
Then, the ratio of it would be

r = a22 − a21 = a23 − a22 = · · · = a2n − a2n−1 = a2n+1 − a2n = . . .

It follows that

(an−an−1)(an+an−1) = (an+1−an)(an+1+an), n = 2, 3, 4, . . .
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Since an−1 < an < an+1 we have an+1 + an > an + an−1 so the
above equality yields

a2 − a1 > a3 − a2 > a4 − a3 > · · · > an − an−1 > · · · > 0

which is clearly impossible.


